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Let {Sn}n denote the monic orthogonal polynomial sequence with respect to the
Sobolev inner product

Of, gPS=F f(x) g(x) dk0(x)+l F f(x) g(x) dk1(x),

where l > 0 and {dk0, dk1} is a so-called symmetrically coherent pair, with
dk0 or dk1 the classical Gegenbauer measure (x2−1)a dx, a > −1. If dk1 is
the Gegenbauer measure, then Sn has n different, real zeros. If dk0 is the
Gegenbauer measure, then Sn has at least n−2 different, real zeros. Under certain
conditions Sn has complex zeros. Also the location of the zeros of Sn with respect to
Gegenbauer polynomials, is studied. © 2002 Elsevier Science (USA)
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Gegenbauer polynomials.

1. INTRODUCTION

Consider the Sobolev inner product

Of, gPS=F
b

a
f(x) g(x) dk0(x)+l F

b

a
fŒ(x) gŒ(x) dk1(x), (1)

where dk0 and dk1 are measures on (a, b) and l > 0. Let {Pn}n and {Qn}n
denote monic orthogonal polynomial sequences (MOPS) with respect to
dk0 and dk1, respectively. The pair {dk0, dk1} is called a symmetrically
coherent pair if there exist non-zero constants Dn such that

Qn=
P −n+1
n+1

+Dn
P −n−1
n−1

, n \ 2. (2)



The concept of (symmetrically) coherent pairs was introduced by Iserles
et al. in [3]. For a survey of results on (symmetrically) coherent pairs, see
[4, 7]. In [8] all symmetrically coherent pairs have been determined by
Meijer. Especially, it has been proved that one of the two measures dk0
and dk1 must be a Hermite or Gegenbauer measure.

In [5] Marcellán et al. investigated the coherent pair {dk0, dk1}=
{xae−x dx, xae−x dx}, a > −1 and (a, b)=(0,.). They proved that the
polynomial Sn has n different, real zeros. The same authors proved a
similar result in [6] for the symmetrically coherent pair {(1−x2)a,
(1−x2)a}, a > −1, which is a special case of what is called ‘‘Type D’’ in
this paper. In [2] De Bruin and Meijer proved that all polynomials Sn
following from coherent pairs, have n different, real zeros.

Symmetrically coherent pairs of Hermite type has been studied in [1]. In
that case it has been proved that if dk1 is the Hermite measure e−x

2
dx, then

Sn has n different, real zeros. If dk0 is the Hermite measure, then Sn has at
least n−2 different, real zeros and under certain conditions Sn has complex
zeros.

The aim of this paper is to determine the location of the zeros of the
Sobolev polynomials Sn, where {Sn}n is the MOPS with respect to the inner
product (1) and where (a, b)=(−1, 1). We assume {dk0, dk1} to be a
symmetrically coherent pair of Gegenbauer type.

In Section 2 we recall some well known properties of Gegenbauer poly-
nomials, which will be used in this paper. In Section 3 we divide the
symmetrically coherent pairs of Gegenbauer type in five classes (type A, B,
C, D and E) and we determine general properties which hold for all the
classes. In Section 4 we introduce moments and we determine the sign of
these moments. In Section 5 we will use the moments and Gauss quadra-
ture to determine the location of the zeros of the polynomials Sn. Polyno-
mials Sn following from symmetrically coherent pairs of type A, B, C and
D turn out to have n different, real zeros. For type E the polynomials Sn
have at least n−2 different, real zeros. Moreover, if n=2m+1, Sn has n
different, real zeros. In Section 5.1 we study the case where lQ. for type
E and prove that, under certain conditions, S2m has complex zeros.

Since dk0 for the Gegenbauer type in most of the cases depends on a
parameter a, we will sometimes use a subscript a to be able to distinguish
two different measures dk0 with a different parameter a: dk0, a. Throughout
this paper we will use the following notations:

Of, gPi, a=F
1

−1
f(x) g(x) dki, a(x), i=0, 1

Of, gPS, a=F
1

−1
f(x) g(x) dk0, a(x)+l F

1

−1
fŒ(x) gŒ(x) dk1, a(x)
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||f||2i, a=F
1

−1
f2 (x) dki, a(x), i=0, 1

||f||2S, a=F
1

−1
f2 (x) dk0, a(x)+l F

1

−1
(fŒ(x))2 dk1, a(x)

When there can be no confusion we will omit the subscript a.

2. CLASSICAL GEGENBAUER POLYNOMIALS

Let {G (a)n }n be the sequence of monic Gegenbauer polynomials with
parameter a > −1. For the classical Gegenbauer polynomials the following
properties are known (see [10]):
G (a)n is orthogonal with respect to the inner product

Of, gP=F
1

−1
f(x) g(x)(1−x2)a dx. (3)

The following relations are satisfied

d
dx
G (a)n (x)=nG(a+1)n−1 (x), (4)

d
dx
3G (a)n+1(x)−

n(n+1)
4(n+a+1

2)(n+a−
1
2)
G (a)n−1(x)4=(n+1) G (a)n (x). (5)

The three-term recurrence relation reads

G (a)n+1(x)=xG(a)n (x)−
n(n+2a)

(2n+2a−1)(2n+2a+1)
G (a)n−1(x). (6)

For G (a)n (1) we have

G (a)n (1)=
C(a+1

2) C(n+2a+1)
2nC(2a+1) C(n+a+1

2)
. (7)

From (3) follows that

G (a)n (x)=P(a, a)n (x),

where P (a, b)n (x) is the monic Jacobi polynomial of degree n, orthogonal with
respect to the inner product

Of, gP=F
1

−1
f(x) g(x)(1−x)a (1+x)b dx.
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The polynomials G (a)n and P (a, b)n satisfy the following relations

G (a)2m(x)=2−mP (a, −
1
2)

m (2x2−1), G (a)2m+1(x)=2−mxP(a,
1
2)

m (2x2−1). (8)

The Rodrigues formula for monic Jacobi polynomials reads

P (a, b)n (x)=(−1)n
C(n+a+b+1)
C(2n+a+b+1)

(1−x)−a (1+x)−b×

×1 d
dx
2n [(1−x)n+a (1+x)n+b]. (9)

3. SYMMETRICALLY COHERENT PAIRS OF
GEGENBAUER TYPE

In this section we will determine some properties of symmetrically
coherent pairs of Gegenbauer type, that will be useful later on in this
paper.

Consider the inner product

Of, gPS=F
1

−1
f(x) g(x) dk0(x)+l F

.

−.
fŒ(x) gŒ(x) dk1(x), (10)

where dk0 is a measure on (−1, 1), dk1 is a measure on R with a continu-
ous part only on (−1, 1) and l > 0. Let {Pan}n denote the MOPS with
respect to O., .P0 and {Qan}n the MOPS with respect to O., .P1. We assume
{dk0, dk1} to be a symmetrically coherent pair, i.e. there exist non-zero
constants Dn such that

Qan=
(Pan+1)Œ
n+1

+Dn
(Pan−1)Œ
n−1

, n \ 2. (11)

In [8] Meijer proved that there exist five types of symmetrically coherent
pairs {dk0, dk1} with dk0 or dk1 the classical Gegenbauer measure:

A {(x2+t2)(1−x2)a−1 dx, (1−x2)a dx}, a > 0,

B {(t2−x2)(1−x2)a−1 dx, (1−x2)a dx}, |t| > 1, a > 0,

C { dx+Md(−1)+Md(1), dx}, M \ 0,

D 3(1−x2)a−1 dx, (1−x
2)a

t2−x2
dx+Md(−t)+Md(t)4 ,

|t| > 1, a > 0, M \ 0,
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E 3(1−x2)a−1 dx, (1−x
2)a

x2+t2
dx4 , t ] 0, a > 0.

For these five types we can determine the constants Dn in (11). We will
denote Dn for type A by DAn , etc. We use here and elsewhere in this paper,
implicitly, that if n is odd/even, the polynomials Pan , Q

a
n and Sn are odd/

even. Also we will use implicitly that the integral, if convergent, over a
symmetric interval of an odd function equals zero.

Type A. In this case the polynomials Qan are the Gegenbauer poly-
nomials G (a)n and for Dn we obtain, by expanding G (a−1)n+1 in terms of Pai ,
using the orthogonality of G (a−1)n+1 and using (4),

DAn=
n−1
n+1

||G (a−1)n+1 ||
2
1, a−1

||Pan−1 ||
2
0, a

> 0.

Type B. In the same way as for type A we find

DBn=−
n−1
n+1

||G (a−1)n+1 ||
2
1, a−1

||Pan−1 ||
2
0, a

< 0.

Type C. In this case the polynomials Qn are the Legendre polyno-
mials G (0)n . We expand G (0)n+1−

n(n+1)
4(n+1/2)(n−1/2) G

(0)
n−1 in terms of Pi. From (7)

follows that G (0)n+1(1)=
n(n+1)

4(n+1/2)(n−1/2) G
(0)
n−1(1) and using (5) we obtain

DCn=−
n(n−1)

4(n+1
2)(n−

1
2)
||G (0)n−1 ||

2
1

||Pn−1 ||
2
0

< 0.

Type D. In this case the polynomials Pan are the Gegenbauer poly-
nomials G (a−1)n and for Dn we obtain, by expanding Qan in terms of G (a)i ,
using the orthogonality of Qan and using (4),

DDn=−
||Qan ||

2
1, a

||G (a)n−2 ||
2
0, a+1

< 0.

Type E. In the same way as for type D, we find

DEn=
||Qan ||

2
1, a

||G (a)n−2 ||
2
0, a+1

> 0.
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Let {Sln}n be the MOPS with respect to the inner product (10). When we
do not explicitly need the value of l, we will omit the superscript l.

Lemma 3.1. For the polynomials Pan and Sn we have the following relation

Pan+1
n+1

+Dn
Pan−1
n−1

=
Sn+1
n+1

+dn
Sn−1
n−1

, n \ 2, (12)

and for the polynomials Qn and Sn we have

Qan=
S −n+1
n+1

+dn
S −n−1
n−1

, n \ 2, (13)

where

dn=Dn
||Pan−1 ||

2
0, a

||Sn−1 ||
2
S, a

. (14)

Proof. Because {dk0, dk1} is a symmetrically coherent pair, Pan and Qan
satisfy relation (11). We expand Pan+1/(n+1)+Dn(P

a
n−1/(n−1)) in terms of

Si:

Pan+1
n+1

+Dn
Pan−1
n−1

=
Sn+1
n+1

+C
n

i=0
cn, iSi.

Using the orthogonality of Pan and Qan we find

cn, i=˛
0 if i [ n−2,

Dn
n−1

||Pan−1 ||
2
0, a

||Sn−1 ||
2
S, a

if i=n−1,

0 if i=n,

which gives

Pan+1
n+1

+Dn
Pan−1
n−1

=
Sn+1
n+1

+dn
Sn−1
n−1

, (15)

with

dn=Dn
||Pan−1 ||

2
0, a

||Sn−1 ||
2
S, a

.

By differentiating (15) the lemma follows. L
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Remark 3.1. We point out the fact that the sign of dn depends on the
sign of Dn, i.e.

sgn dn=sgn Dn.

Later on we will use the notation dAn to denote the constants dn for
type A, etc.

We define the polynomials S.n by

S.n (x)= lim
lQ.

Sln(x).

Since Sl0(x)=1, Sl1(x)=x and Sl2(x)=Pa2(x), S
.

n exists for n [ 2. The
following lemma shows that S.n also exists for n \ 3.

Lemma 3.2. For n \ 3 we have

S.n (x)=Pan(x)+Dn−1
n

n−2
Pan−2(x).

Proof. We will use (15) and (14). Observe that for n \ 1

||Sln−1 ||
2
S, a > l F

1

−1
((Sln−1)Œ (x))

2 dk1(x),

and with the extremal property of the norm of orthogonal polynomials

l F
1

−1
((Sln−1)Œ (x))

2 dk1 > l(n−1)2 F
1

−1
(Qan−2(x))

2 dk1.

Using (14) we then have

lim
lQ.

dn=0, n \ 2.

Using that S1(x)=x and (12) we find

S.3 (x)=Pa3(x)+3D2P
a
1(x).

Using that S2(x)=Pa2(x) and (12) we have

S.4 (x)=Pa4(x)+2D3P
a
2(x).

Now the lemma follows by induction. L

Remark 3.2. Since Qa0(x)=1 and Qa1(x)=x, differentiating S.n ,
Lemma 3.2 and (11) give

(S.n )Œ (x)=nQan−1(x), n \ 1. (16)
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4. THE MOMENTS

In this section we introduce moments for each of the five types of sym-
metrically coherent pairs mentioned in Section 3. Using these moments we
find lemmas, which we will use to determine the location of the zeros of Sn.

We distinguish two cases: n is even or n is odd.

n=2m. Type A. For m \ 1 and i=−2, −1, ..., m−1 we define the
moments mmi, A by

mmi, A=F
1

−1
S2m(x)(x2+t2) i+1 (1−x2)a−1 dx, i \ −1,

mm−2, A=0.

Type B. For m \ 1 and i=−2, −1, ..., m−1 we define the moments
mmi, B by

mmi, B=F
1

−1
S2m(x)(x2−t2) i+1 (1−x2)a−1 dx, i \ −1,

mm−2, B=0.

Type C. For m \ 1 and i=0, 1, ..., m−1 we define the moments
mmi, C by

mmi, C=F
1

−1
S2m(x)(x2−1) i dx, i \ 0.

Type D. For m \ 1 and i=−1, 0, ..., m−1 we define the moments
mmi, D by

mmi, D=F
1

−1
S2m(x)(x2−t2) i (1−x2)a−1 dx, i \ 0,

mm−1, D=0.

Type E. For m \ 1 and i=−1, 0, ..., m−1 we define the moments
mmi, E by

mmi, E=F
1

−1
S2m(x)(x2+t2) i (1−x2)a−1 dx, i \ 0,

mm−1, E=0.
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Lemma 4.1. For m \ 2 and for 1 [ i [ m−1 we have

mmi, A=−2li{aAi m
m
i−1, A−b

A
i m

m
i−2, A+(i−1) c

A
i m

m
i−3, A},

mmi, B=2li{aBi m
m
i−1, B+b

B
i m

m
i−2, B+(i−1) c

B
i m

m
i−3, B},

and for m \ 3 and 2 [ i [ m−1 we have

mmi, C=2li{(2i−1) mmi−1, C+2(i−1) m
m
i−2, C},

mmi, D=2li{aDi m
m
i−1, D+b

D
i m

m
i−2, D+(i−2) c

D
i m

m
i−3, D},

mmi, E=−2li{aEi m
m
i−1, E−b

E
i m

m
i−2, E+(i−2) c

E
i m

m
i−3, E},

where a ji > 0, b
j
i > 0 and c

j
i \ 0, j=A, B, D, E.

Proof. For type A we have for 1 [ i [ m−1, OS2m, (x2+t2) iPS=0,
hence

mmi, A=−2li F
1

−1
xS −2m(x)(x

2+t2) i−1 (1−x2)a dx.

Using integration by parts we then find

aAi=2i+2a−1

bAi=2i−1+t2 (4i+2a−3)

cAi=2t2 (1+t2).

In the same way we find for type D:

aDi =2i+2a−3

bDi =t
2 (4i+2a−7)−2i+3

cDi =2t2 (t2−1).

Observe that by replacing t2 in mmi, A by −t2, we get the result for type B.
In the same way we can obtain the result for type E, from type D. We get
the result for type C from type B, by substituting t2=1 and a=0. L

Lemma 4.2. For m \ 2 we have

(i) mm0, j=0, j=A, B, D, E,

mm0, C [ 0,
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(ii) sgn mmi, A=(−1)m+i+1, i=−1, 1, 2, ..., m−1,

mmi, B > 0, i=−1, 1, 2, ..., m−1,

mmi, C < 0, i=1, 2, ..., m−1,

mmi, D < 0, i=1, 2, ..., m−1,

sgn mmi, E=(−1)m+i+1, i=1, 2, ..., m−1.

Proof. From OS2m, 1PS=0 we obtain mm0, j=0 for j=A, B, D, E and

mm0, C=−2MS2m(1). (17)

Using Lemma 4.1 we get for i=1

mm1, A=2lbA1m
m
−1, A,

hence sgn mm1, A=sgn mm−1, A.
From OS2m, x2+t2PS=0 we obtain

mm1, A=−2l F
1

−1
S −2m(x) x(1−x

2)a dx.

Using OG (a)2m−1, xP1=0 and applying (13) repeatedly, we get

F
1

−1

S −2m(x)
2m

x(1−x2)a dx

=(−1)m−1 dA2m−1d
A
2m−3 · · · d

A
3 F

1

−1

S −2(x)
2

x(1−x2)a dx.

Since >1−1 (S −2(x)/2) x(1−x2)a dx=>1−1 x2 (1−x2)a dx > 0 and dAi > 0 we
get

sgn mm−1, A=sgn mm1, A=(−1)m.

By Lemma 4.1 and induction the lemma follows for type A. The proof for
types B, D, and E runs along the same lines.

For type C we obtain in the same way

mm1, C=−2l F
1

−1
xS −2m(x) dx < 0.

Integration by parts and (17) give

mm1, C=−2l(2S2m(1)−m
m
0, C)=−4l(1+M) S2m(1).
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From this follows that S2m(1) > 0 and therefore mm0, C [ 0. Then by induc-
tion the lemma follows for type C. L

Let p(x) denote an even monic polynomial of degree 2k, such that all
zeros of p(x) are real. For each type j we define an integral I j1, l by

I j1, l=F
1

−1
S2m(x) p(x)(x2+t2) l (1−x2)a−1 dx, j=A, E,

I j1, l=F
1

−1
S2m(x) p(x)(x2−t2) l (1−x2)a−1 dx, j=B, D,

IC1, l=F
1

−1
S2m(x) p(x)(x2−1) l dx.

Lemma 4.3. Let m \ 2.

(i) If 1 [ k+l [ m and p(x) ] x2, then sgn IA1, l=(−1)m+k+l.
(ii) If 1 [ k+l [ m, p(x) ] x2−t2 and if all zeros of p(x) lie in the

interval [− |t|, |t|], then IB1, l > 0.
(iii) If 1 [ k+l [ m−1 and all zeros of p(x) lie in the interval

[−1, 1], then IC1, l < 0.
(vi) If 1 [ k+l [ m−1 and all zeros of p(x) lie in the interval

[− |t|, |t|], then ID1, l < 0.
(v) If 1 [ k+l [ m−1, then sgn IE1, l=(−1)m+k+l+1.

Proof. We proof the lemma for type A. For the other types the proof is
similar.

Let x1, ..., xk denote the non-negative zeros of p(x). For i=1, ..., k put
t2i=x2i+t

2. Then

p(x)=(x2+t2−t21) · · · (x
2+t2−t2k)

=C
k

i=0
ci(x2+t2) i,

where ck=1 and if ci ] 0, then sgn ci=(−1)k−i. Then

IA1, l=C
k

i=0
cim

m
i+l−1, A.

Using Lemma 4.2 we obtain that if ci ] 0 and i ] 1, then sgn cim
m
i+l−1, A=

(−1)m+k+l. Hence sgn IA1, l=(−1)m+k+l. Notice that if t=0 and p(x)=x2,
then c0=0, which gives IA1, 0=0.

For type B observe that, since the zeros of p(x) lie in the interval
[− |t|, |t|], ti=x2i −t

2 is non-positive, therefore ci \ 0. L
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n=2m+1. Type A. For m \ 1 and i=−2, −1, ..., m−1 we define the
moments mmi, A by

mmi, A=F
1

−1
xS2m+1(x)(x2+t2) i+1 (1−x2)a−1 dx.

Type B. For m \ 1 and i=−2, −1, ..., m−1 we define the moments
mmi, B by

mmi, B=F
1

−1
xS2m+1(x)(x2−t2) i+1 (1−x2)a−1 dx.

Type C. For m \ 1 and i=0, 1, ..., m−1 we define the moments
mmi, C by

mmi, C=F
1

−1
xS2m+1(x)(x2−1) i dx.

Type D. For m \ 1 and i=−1, 0, ..., m−1 we define the moments
mmi, D by

mmi, D=F
1

−1
xS2m+1(x)(x2−t2) i (1−x2)a−1 dx, i \ 0,

mm−1, D=0.

Type E. For m \ 1 and i=−1, 0, ..., m−1 we define the moments
mmi, E by

mmi, E=F
1

−1
xS2m+1(x)(x2+t2) i (1−x2)a−1 dx.

Note that the moments mm−2, j, j=A, B, and mm−1, E are finite.

Lemma 4.4. For m \ 2, 1 [ i [ m−1, we have

mmi, A=−2l{aAi m
m
i−1, A−b

A
i m
m
i−2, A+(i−1) c

A
i m
m
i−3, A},

mmi, B=2l{aBi m
m
i−1, B+b

B
i m
m
i−2, B+(i−1) c

B
i m
m
i−3, B},

and for m \ 3, 2 [ i [ m−1, we have

mmi, C=2il{(2i+1) mmi−1, C+2(i−1) m
m
i−2, C},

mmi, D=2l{aDi m
m
i−1, D+b

D
i m
m
i−2, D+(i−2) c

D
i m
m
i−3, D},

mmi, E=−2l{aEi m
m
i−1, E−b

E
i m
m
i−2, E+(i−2) c

E
i m
m
i−3, E},

where a ji > 0, b
j
i > 0 and c

j
i \ 0, j=A, B, D, E.

126 W. G. M. GROENEVELT



Proof. For type A we find, using OS2m+1, x(x2+t2) iPS=0 for m \ 2
and 1 [ i [ m−1,

mmi, A=−l(2i+1) F
1

−1
S −2m+1(x)(x

2+t2) i (1−x2)a dx+

+2lit2 F
1

−1
S −2m+1(x)(x

2+t2) i−1 (1−x2)a dx.

Integration by parts (the constant term vanishes) gives

F
1

−1
S −2m+1(x)(x

2+t2) i (1−x2)a dx

=2(i+a) F
1

−1
xS2m+1(x)(x2+t2) i (1−x2)a−1 dx

−2i(1+t2) F
1

−1
xS2m+1(x)(x2+t2) i−1 (1−x2)a−1 dx.

From this we obtain

aAi=(2i+1)(i+a)

bAi=i((2i+1)+t2(4i+2a−1))

cAi=2it2(1+t2).

In the same way we find for type D

ai=(i+a−1)(1+2i)

bi=i(4it2−5t2+2at2−2i+1)−(t2−1)

ci=2it2 (t2−1).

Again by replacing t2 by −t2 we get the result for type B from type A. In
the same way we can obtain the result for type E, from type D. We get the
result for type C from type B, by substituting t2=1 and a=0. L

Lemma 4.5. For m \ 1 we have

sgn mmi, A=(−1)m+i+1, −1 [ i [ m−1,

mmi, B > 0, −1 [ i [ m−1,

mmi, C < 0, 0 [ i [ m−1,

mmi, D < 0, 0 [ i [ m−1,

sgn mmi, E=(−1)m+i+1, 0 [ i [ m−1.
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Proof. Type A. For mm−1, A we get, using integration by parts,

mm−1, A=F
1

−1
xS2m+1(x)(1−x2)a−1 dx=

1
2a

F
1

−1
S −2m+1(x)(1−x

2)a dx. (18)

Using OG (a)2m , 1P1=0 and applying (13) repeatedly, we obtain in the same
way as in Lemma 4.2

sgn mm−1, A=(−1)m.

For mm0, A we obtain from OS2m+1, xPS=0,

mm0, A=−l F
1

−1
S −2m+1(x)(1−x

2)a dx.

From (18) we see that sgn mm0, A is the opposite of sgn mm−1, A, hence

sgn mm0, A=(−1)m+1.

By Lemma 4.4 and induction the lemma follows for type A. For type B the
proof is similar.

Type C. For mm0, C we find, using OS2m+1, xPS=0,

mm0, C=−l F
1

−1
S −2m+1(x) dx−2MS2m+1(1)=−2(l+M) S2m+1(1).

Since dC2m < 0, we find from (13) and OG (0)2m , 1P1=0 that

sgn F
1

−1
S −2m+1(x) dx=sgn F

1

−1
S −2m−1(x) dx

and therefore that

sgn S2m+1(1)=sgn S1(1).

Since S1(1)=P1(1) > 0, we have

mm0, C < 0.

For m \ 2 we find, using OS2m+1, x(x2−1)PS=0,

mm1, C=−l F
1

−1
S −2m+1(x)(3x

2−1) dx.
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Then we use OG (0)2m , 3x
2−1P1=0 and (13) repeatedly, to find in a similar

way as in the proof of lemma 4.2

mm1, C < 0.

Here we used S −3/3=Q2−d
C
2 and the orthogonality of Q2 to determine the

sign of >1−1 S −3(x)(3x2−1) dx. Now by Lemma 4.4 and induction the lemma
follows.

Type D. Using OS2m+1, x(x2−t2)PS=0 we get for m \ 2

mm1, D=l F
1

−1
S −2m+1(x)(t

2−3x2) dk1

=3l F
1

−1
S −2m+1(x)(1−x

2)a dx−2lt2 F
1

−1
S −2m+1(x)

(1−x2)a

t2−x2
dx

−4Mt2lS −2m+1(t).

Integration by parts gives

F
1

−1
S −2m+1(x)(1−x

2)a dx=2a F
1

−1
S2m+1(x) x(1−x2)a−1 dx.

From OS2m+1, xPS=0 we obtain

−2l F
1

−1
S −2m+1(x)

(1−x2)a

t2−x2
dx−4MlS −2m+1(t)

=2 F
1

−1
S2m+1(x) x(1−x2)a−1 dx.

And then we have

mm1, D=(6la+2t2) mm0, D.

In a similar way as for type A we find

mm0, D < 0.

By Lemma 4.4 and induction the lemma then follows for type D. For type
E the proof is similar. L

Again let p(x) denote an even monic polynomial of degree 2k, such that
all zeros of p(x) are real. For each type j we define an integral I j2, l by
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I j2, l=F
1

−1
xS2m+1(x) p(x)(x2+t2) l (1−x2)a−1 dx, j=A, E,

I j2, l=F
1

−1
xS2m+1(x) p(x)(x2−t2) l (1−x2)a−1 dx, j=B, D,

IC2, l=F
1

−1
xS2m+1(x) p(x)(x2−1) l dx.

Lemma 4.6. Let m \ 1.

(i) If 0 [ k+l [ m, then sgn IA2, l=(−1)m+k+l.
(ii) If 0 [ k+l [ m and all zeros of p(x) lie in the interval [− |t|, |t|],

then IB2, l > 0.
(iii) If 0 [ k+l [ m−1 and all zeros of p(x) lie in the interval

[−1, 1], then IC2, l < 0.
(iv) If 0 [ k+l [ m−1 and all zeros of p(x) lie in the interval

[− |t|, |t|], then ID2, l < 0.
(v) If 0 [ k+l [ m−1, then sgn IE2, l=(−1)m+k+l+1.

Proof. The proof is similar to the proof of Lemma 4.3. L

5. LOCATION OF THE ZEROS

Using Lemmas 4.3 and 4.6 from the previous section we can determine
the position of the zeros of Sn for all types, with respect to other (known)
polynomials. Knowing the position of the zeros we find that Sn has n dif-
ferent, real zeros for type A, B, C, and D and at least n−2 different, real
zeros for type E. Since the method by which we determine the position of
the zeros, is the same for all the types of symmetrically coherent pairs, we
only give the proof for type A.

Theorem 5.1. Let {dk0, dk1} denote a symmetrically coherent pair of
type A. Let n \ 3. Then Sn has n different, real zeros. Let {G

(a−1)
n }n denote

the MOPS of Gegenbauer polynomials. Let g1 < · · · < gm denote the positive
zeros of G (a−1)n and let s1 < · · · < sm denote the positive zeros of Sn. Then

g1 < s1 < · · · < gm < sm.

Proof. Note that −gi is also a zero of G (a−1)n . For n=2m put

p(x)=
G (a−1)2m (x)
x2−g2i

, i=1, 2, ..., m.
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For n=2m+1 put

p(x)=
G (a−1)2m+1(x)
x(x2−g2i )

, i=1, 2, ..., m.

Using Lemma 4.3 for n=2m and Lemma 4.6 for n=2m+1, we obtain

F
1

−1
Sn(x)

G (a−1)n (x)
x2−g2i

(1−x2)a−1 dx < 0.

Applying Gauss-quadrature on the zeros of G (a−1)n gives

Sn(gi)(G
(a−1)
n )Œ (gi)
gi

< 0.

Since gi > 0, we now have sgn Sn(gi)=−sgn (G (a−1)n )Œ (gi). And since
(G (a−1)n )Œ has opposite sign in two consecutive zeros of G (a−1)n , the same
holds for Sn. Thus Sn has a zero in each of the intervals (gi, gi+1) and in
each of the intervals (−gi+1, −gi), i=1, ..., m−1. Since (G(a−1)n )Œ (gm) > 0,
we have Sn(gm) < 0. Because Sn is monic, Sn has a zero on the right of gm
and therefore also a zero on the left of −gm. Using S2m+1(0)=0, we have
found n different, real zeros of Sn. L

Remark 5.1. Expanding G (a−1)n in terms of Pai gives

G (a−1)n (x)=Pan(x)+Dn−1
n

n−2
Pan−2(x).

Using Lemma 3.2 we then get

S.n (x)=G(a−1)n (x).

This means that the lower bound from Theorem 5.1 cannot be improved.

Theorem 5.2. Let {dk0, dk1} denote a symmetrically coherent pair of
type A. Let {Pan}n denote the MOPS with respect to dk0. Let n \ 3, let
p1 < · · · < pm denote the positive zeros of P

a
n and let s1 < · · · < sm denote the

positive zeros of Sn. Then

s1 < p1 < · · · < sm < pm.

Proof. For n=2m put

p(x)=
Pa2m(x)
x2−p2i

(x2+t2), i=1, 2, ..., m.
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For n=2m+1 put

p(x)=
Pa2m+1(x)
x(x2−p2i )

(x2+t2), i=1, 2, ..., m.

Using Lemma 4.3 for n=2m and Lemma 4.6 for n=2m+1, we obtain

F
1

−1
Sn(x)

Pan(x)
x2−p2i

(x2+t2)(1−x2)a−1 dx > 0.

Applying Gauss-quadrature on the zeros of Pan gives

Sn(pi)(P
a
n)Œ (pi)

pi
> 0.

Using arguments similar to those in the proof of Theorem 5.1 gives the
desired result. L

Remark 5.2. Observe that if l tends to zero, then Sn tends to Pan .
Therefore the upper bounds from Theorem 5.2 cannot be improved.

Theorem 5.3. Let {dk0, dk1} denote a symmetrically coherent pair of
type B. Then Sn has n different, real zeros. Let {P

a
n}n denote the MOPS with

respect to dk0. Let n \ 3, let p1 < · · · < pm denote the positive zeros of P
a
n

and let s1 < · · · < sm denote the positive zeros of Sn. Then

p1 < s1 · · · < pm < sm.

Remark 5.3. As for type A observe that if l tends to zero, then Sn
tends to Pan . Therefore the lower bounds from theorem 5.3 cannot be
improved.

Theorem 5.4. Let {dk0, dk1} denote a symmetrically coherent pair of
type B. Let n \ 3. Let {G (a−1)n }n denote the MOPS of Gegenbauer polyno-
mials. Let g1 < · · · < gm denote the positive zeros of G (a−1)n and let
s1 < · · · < sm denote the positive zeros of Sn. Then

s1 < g1 < · · · < sm < gm.

Remark 5.4. As for type A we can prove for type B that

S.n (x)=G(a−1)n (x).
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This means that the upper bound from Theorem 5.4 cannot be improved.

Remark 5.5. Notice that, different from type A, for type B we first
compare the zeros of Sn to the zeros of Pn (i.e., the polynomials orthogonal
with respect to dk0) and then to Qn (i.e., the polynomials with respect to
dk1). This is because we need a lower bound for the zeros in order to prove
that Sn has n different, real zeros.

Theorem 5.5. Let {dk0, dk1} denote a symmetrically coherent pair of
type C. Then Sn has n different, real zeros. Let {G

(0)
n }n denote the MOPS of

Legendre polynomials. Let n \ 3, let g1 < · · · < gm denote the positive zeros
of G (0)n and let s1 < · · · < sm denote the positive zeros of Sn. Then

g1 < s1 · · · < gm < sm.

Theorem 5.6. Let {dk0, dk1} denote a symmetrically coherent pair of
type D. Let n \ 3. Then Sn has n different, real zeros. Let {G

(a−1)
n }n denote

the MOPS of Gegenbauer polynomials. Let g1 < · · · < gm denote the positive
zeros of G (a−1)n and let s1 < · · · < sm denote the positive zeros of Sn. Then

g1 < s1 < · · · < gm < sm.

Remark 5.6. If l tends to zero, then Sn tends to G (a−1)n . This means that
the lower bounds from Theorem 5.6 cannot be improved.

Theorem 5.7. Let {dk0, dk1} denote a symmetrically coherent pair of
type E. Let n \ 3. Then Sn has at least n−2 different, real zeros. Let
{G(a−1)n }n denote the MOPS of Gegenbauer polynomials. Let g1 < · · · < gm
denote the positive zeros of G (a−1)n and let s2 [ ... [ sm denote the largest
positive zeros of Sn. Then

g1 < s2 < · · · < sm < gm.

If Sn has n different, real zeros, let s1 denote the smallest positive zero. Then

s1 < g1.

Proof. In the same way as in the proof of Theorem 5.1 we find

Sn(gi)(G
(a−1)
n )Œ (gi)
gi

> 0. (19)

Since gi > 0, we now have sgn Sn(gi)=sgn (G (a−1)n )Œ (gi). And since
(G (a−1)n )Œ has opposite sign in two consecutive zeros of G (a−1)n , the same
holds for Sn. Thus Sn has a zero in each of the intervals (gi, gi+1) and in
each of the intervals (−gi+1, −gi), i=1, ..., m−1. Using S2m+1(0)=0, we
have found n−2 different, real zeros of Sn.
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Suppose that that Sn has two zeros in the interval (gk, gk+1),
1 [ k [ m−1. Then, since sgn Sn(gk)=sgn (G(a−1)n )Œ (gi), Sn must have
three zeros in the interval (gk, gk+1). Because Sn is an odd or an even
polynomial, Sn then would have n+2 zeros. Because Sn is monic and
(G (a−1)n )Œ (gm) > 0, Sn cannot have a zero in (gm,.), because then Sn would
have two zeros in (gm,.) and two zeros in (−., −gm). Therefore, if Sn
has n positive zeros, then s1 < g1. L

Remark 5.7. If l tends to zero, then Sn tends to G (a−1)n . Therefore the
upper bounds from Theorem 5.7 cannot be improved.

Because Theorem 5.7 states that Sn has at least n−2 different, real zeros,
the theorem does not exclude the possibility that Sn has complex zeros. In
the next section we proof that under certain conditions Sn indeed has
complex zeros. But first we proof that the odd polynomials S2m+1 of type E
have 2m+1 real zeros.

Lemma 5.1. Let {dk0, dk1} denote a symmetrically coherent pair of type
E. Let m \ 1, then S2m+1 has 2m different extremata. Let {Qan}n denote the
MOPS with respect to dk1, let q1 < · · · < qm denote the positive zeros of Q

a
2m

and let s1 < · · · < sm denote the positive extremata of S2m+1. Then

q1 < s1 < · · · < qm < sm.

Proof. Consider for 0 [ i [ m the following integral

Mm
i =F

1

−1
S −2m+1(x)(x

2+t2) i−1 (1−x2)a dx.

For i=0 we get from OS2m+1, xPS=0

Mm
0=−

mm0, E
l
.

For 1 [ i [ m integration by parts shows

Mm
i =(2i+2a−2) mmi−1, E−2(i−1)(t

2+1) mmi−2, E.

Then by lemma 4.5

sgnMm
i =(−1)m+i. (20)
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Let p(x) denote an even monic polynomial of degree 2k, 1 [ k [ m, such
that all zeros of p(x) are real. Let x1, ..., xk denote the nonnegative zeros of
p(x). For 1 [ i [ k put t2i=x2i+t

2. Then

p(x)=(x2+t2−t21) · · · (x
2+t2−t2k)

=C
k

i=0
ci(x2+t2) i,

where ck=1 and sgn ci=(−1)k−i.
Since

F
1

−1
S −2m+1(x) p(x)

(1−x2)a

x2+t2
dx=C

k

i=0
ciM

m
i ,

we obtain from (20)

sgn F
1

−1
S −2m+1(x) p(x)

(1−x2)a

x2+t2
dx=(−1)m+k. (21)

For 1 [ i [ m put

p(x)=
Qa2m(x)
x2−q2i

.

Then (21) gives

F
1

−1
S −2m+1(x)

Qa2m(x)
x2−q2i

(1−x2)a

x2+t2
dx < 0.

Applying Gauss-quadrature on the zeros of Qa2m gives

S −2m+1(qi)(Q
a
2m)Œ (qi)

qi
< 0. (22)

Then arguments similar to those in the proof of theorem 5.1 give the
desired result. L

Theorem 5.8. Let {dk0, dk1} denote a symmetrically coherent pair of
type E. Let m \ 0, then S2m+1 has 2m+1 different, real zeros.

Proof. We prove for m=2k that S2m+1 has a zero in (0, g1), where g1 is
the smallest positive zeros of G (a−1)4k+1 . From Theorem 5.7 then follows that
S4k+1 has exactly 4k+1 different, real zeros. For m=2k+1 the proof runs
along the same lines.
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From (22) we can determine sgn S −4k+1(q1), where q1 is the smallest
positive zero of Qa2m:

(Qa4k)Œ (q1) < 0S S −4k+1(q1) > 0.

Since S −4k+1 is an even polynomial, we also have S −4k+1(−q1) > 0. According
to Lemma 5.1 S4k+1 has no extremata in the interval (−q1, q1), hence

S −4k+1(0) > 0. (23)

From (19) we get

(G(a−1)4k+1 )Œ (g1) < 0S S4k+1(g1) < 0.

This combined with (23) shows that S4k+1 must have a zero in the interval
(0, g1). L

5.1. Complex zeros

We consider the Gegenbauer-Sobolev polynomials of type E. If l tends
to zero, then Sn tends to G (a−1)n . Thus Sn can only have complex zeros if l is
sufficiently large. Therefore we consider the case where lQ..

From Lemma 3.2 we have

S.n (x)=G(a−1)n (x)+Dn−1
n

n−2
G (a−1)n−2 (x), n \ 3. (24)

Lemma 5.2. S.2m has complex zeros if and only if

D2m−1 >
(a+m− 32)(m−1)(m−

1
2)

m(a+2m− 52)(a+2m−
3
2)
, m \ 2.

Proof. S.2m has complex zeros if and only if sgn S.2m(0) is opposite to
sgn G (a−1)2m (0). From (24) we obtain

S.2m(0)=G(a−1)2m (0)+
m

m−1
D2m−1G

(a−1)
2m−2(0).

From the recurrence relation (6) we find

G (a−1)2m (0)=−
(2m−1)(2a+2m−3)

(2a+4m−5)(2a+4m−3)
G (a−1)2m−2(0).
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Then

S.2m(0)=G(a−1)2m (0) 11− m(2a+4m−5)(2a+4m−3)
(m−1)(2m−1)(2a+2m−3)

D2m−1 2 .

Hence, S.2m has complex zeros if and only if

D2m−1 >
(a+m− 32)(m−1)(m−

1
2)

m(a+2m− 52)(a+2m−
3
2)
.

This proves the lemma. L

Lemma 5.3. S.2m has complex zeros if and only if

Iam(t) >
(2m−1)(a+m− 32)
m(m+a− 12)

, m \ 2,

where

Iam(t)=
F
1

−1

(1−t)m+a−1 (1+t)m−
1
2

(t+1+2t2)m
dt

F
1

−1

(1−t)m+a−2 (1+t)m−
3
2

(t+1+2t2)m−1
dt
.

Proof. Expanding Qan in terms of G (a)i , gives

Qan(x)=G(a)n (x)+DnG
(a)
n−2(x).

Using OQa2m−1, xP1=0, we then obtain

D2m−1=−
F
1

−1
G (a)2m−1(x)

x(1−x2)a

x2+t2
dx

F
1

−1
G (a)2m−3(x)

x(1−x2)a

x2+t2
dx
. (25)

From (8) we get

Jam=F
1

−1
G (a)2m−1(x)

x(1−x2)a

x2+t2
dx

=21−m F
1

−1
P
(a, 12)
m−1(2x

2−1)
x2 (1−x2)a

x2+t2
dx.

ZEROS OF SOBOLEV–GEGENBAUER POLYNOMIALS 137



The substution 2x2−1 :=t gives

Jam=2−(m+a−
1
2) F

1

−1
P
(a, 12)
m−1(t)

(1−t)a (1+t)
1
2

t+1+2t2
dt.

Using the Rodrigues formula (9) and integration by parts m−1 times gives

Jam=(−1)m−1
(m−1)!

2m+a−
1
2

C(m+a+1
2)

C(2m+a− 12)
F
1

−1

(1−t)m+a−1 (1+t)m−
1
2

(t+1+2t2)m
dt.

From (25) we then obtain

D2m−1=
(m+a− 12)(m−1)

2(2m+a− 32)(2m+a−
5
2)

F
1

−1

(1−t)m+a−1 (1+t)m−
1
2

(t+1+2t2)m
dt

F
1

−1

(1−t)m+a−2 (1+t)m−
3
2

(t+1+2t2)m−1
dt

.

From Lemma 5.2 the lemma then follows. L

Theorem 5.9. Let m \ 2. If |t| is sufficiently small, then S.2m has
complex zeros.

Proof. We use Lemma 5.3. Substiting t :=2x−1 gives

Iam(t)=2
F
1

0

(1−x)m+a−1 xm−
1
2

(x+t2)m
dx

F
1

0

(1−x)m+a−2 xm−
3
2

(x+t2)m−1
dx

.

For tQ 0 we get

lim
tQ 0

Iam(t)=
2B(m+a, 12)
B(m+a−1, 12)

=
2(m+a−1)
m+a− 12

,

where B denotes the beta function. It’s clear that the condition

2(m+a−1)
m+a− 12

>
(2m−1)(m+a− 32)
m(m+a− 12)

is satisfied for all m and a. L
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Theorem 5.10. If m is sufficiently large, then S.2m has no complex zeros.

Proof. We will determine the asymptotic behaviour of Iam(t) for
mQ.. We will use Laplace’s method (see, e.g., [9]). The numerator of
Iam(t) we call Nam(t) and the denominator Dam(t). Then

Nam(t)=F
1

−1
e−mp(t)qN(t) dt,

Dam(t)=F
1

−1
e−mp(t)qD(t) dt,

where

p(t)=− log(1−t)− log(1+t)+log(t+1+2t2),

qN(t)=(1−t)a−1 (1+t)−
1
2,

qD(t)=
(1−t)a−2 (1+t)−

3
2

(t+1+2t2)−1
.

The function p(t) has a minimum in

t0=−1−2t2+2`t2+t4 ¥ (−1, 1).

Then Laplace’s method gives

Iam(t) ’
qN(t0)
qD(t0)

=
(1−t0)(1+t0)
t0+1+2t2

< 2, mQ..

Now by Lemma 5.3 we find that S.2m has no complex zeros if mQ.. L
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